BAB5 SISTEM PERSAMAAN LINEAR DUA VARIABEL (SPLDV) - Menyelesaikan SPLDV dengan Metode Eliminasi dan Metode Campuran (Eliminasi + Substitusi) Hanum (menghilangkan) salah satu variabel, sehingga nilai variabel lainnya bisa diketahui. Caranya dapat kamu lihat pada contoh di bawah ini. Berdasarkan metode eliminasi, diperoleh nilai x = 100 Persamaanlinear dapat mempunyai satu, dua, tiga, hingga n n variabel. Dalam pembelajaran ini hanya akan dibahas persamaan linear dua variabel saja. Misalkan: banyaknya uang sepuluh ribuan = x = x lembar dan banyaknya uang dua puluh ribuan = y = y lembar, maka diperoleh persamaan: 10.000x + 20.000y = 230.000 10.000 x + 20.000 y = 230.000. SistemPersamaan Linear dua Variabel ini sering dijumpai dalam permasalahan sehari-hari. SPLDV dapat diselesaikan dengan 3 cara yaitu: Diketahui sistem persamaan linear sebagai berikut. 3x + 5y = 21. 2x - 7y = 45. Carilah nilai x dan y yang memenuhi persamaan di atas. Jawab: 3. Carilah nilai x dan y dari persamaan berikut. 3x + 2y = 10. 9x PilihanA merupakan persamaan linear 2 variabel. Dengan variabel a dan b. Jawaban yang tepat A. 4. Diketahui persamaan linear dua variabel 6p - 5q = 11. Jika nilai p adalah 6, maka nilai q adalah a. 6 b. 5 c. 4 d. 3 Jawab: 6p - 5q = 11, ganti p dengan 6 6 (6) - 5q = 11 36 - 5q = 11 -5q = 11 - 36 -5q = -25 q = -25/-5 q = 5 Jawaban yang tepat B. Nov27 2019 Sistem persamaan linear dua variabel SPLDV adalah pasangan dari dua nilai peubah x atau y yang ekuivalen dengan bentuk umumnya yang mempunyai pasangan terurut x o y oBentuk umum dari SPLDV adalah sebagai berikut. Sep 03 2019 Sistem Persamaan Linear Tiga Variabel SPLTV merupakan salah satu materi matematika wajib peminatan yang Hasilpenelitian menemukan bahwa kesulitan siswa dalam menyelesaikan soal cerita materi sistem persamaan linear dua variabel terletak pada: (1) menentukan kondisi awal yaitu dalam menentukan apa yang diketahui , yang ditanyakan, serta menentukan variabel; (2) menentukan sistem persamaan yaitu dalam membuat model matematika yang sesuai; (3 Jadihimpunan penyelesaian sistem persamaan linear dua variabel tersebut adalah {-30,8} Hapus. Balasan. Diketahui: x+3y=9 x+y=5 bantu menggerjakan spldv metode grafik kak menggunakan aplikasi geogebra. Balas Hapus. Balasan. Hidayanti 20 Desember 2021 15.54. terima kasih atas kunjungannya. Menggambargaris yang mewakili kedua persamaan dalam bidang kartesius. Menemukan titik potong dari kedua grafik tersebut. Penyelesaiannya adalah (x, y). 2. Metode Substitusi. Ubah nilai suatu variabel. Metode dengan substitusi yaitu dengan mengganti nilai suatu variabel di suatu persamaan dari persamaan lainnya. Sistempersamaan linear dua variabel yang di pelajari kelas 8 sering kita gunakan untuk materi lain baik dalam pelajaran matematika, juga pada pelajaran lain seperti fisika, ekonomi dan lainnya. Sistem persamaan linear dua variabel, tiga variabel digunakan untuk menentukan solusi suatu persamaan Misalkan hal yang diketahui menjadi variabel SistemPersamaan Linear Dua Variabel Harga 3 buku tulis dan 4 pensil adalah Rp13.200,00, sedangkan. Study Resources. Main Menu; by School; by Literature Title; by Subject; Textbook Solutions Expert Tutors Earn. Main Menu; Earn Free Access; Upload Documents; Refer Your Friends; Earn Money; Become a Tutor; Pesertadidik diharapkan dapat : 1. Menyebutkan ciri - ciri persamaan linear dua variabel 2. Membedakan antara Persamaan Linear Dua Variabel (PLDV) dan Sistem Persamaan Linear Dua Variabel 3. Menyelesaikan sistem persamaan linear dua variabel jika diketahui himpunan penyelesaiannya. 4. Membuat model matematika sistem persamaan linear dua variabel dengan masalah kontekstual Tanpakita sadari bahwa sistem pesamaan linear dua variabel sangat erat sekali kaitannya dalam kehidupan sehari-hari kita:seperti permasalahan di atas Harga 3 buku tulis dan 4 pensil adalah Rp13.200,00, sedangkan harga 5 buku tulis dan 2 pensil adalah Rp15.000,00. Dapatkah kamu menghitung harga satuan untuk buku tulis dan pensil tersebut? sistempersamaan linear dua variabel. Analisis ini dilakukan guna untuk mengetahui sejauh mana kemampuan pemahaman konsep matematis pada peserta didik SMP. METODE Telah diketahui bahwa data pada penelitian dengan rata-rata sebesar 11,55 dan standar deviasi yaitu sebesar 7,84. Tabel 2. Kriteria Pengelompokkan Peserta Didik SistemPersamaan Linear Dua Variabel (SPLDV)- Persamaan linear dua variabel merupakan sebuah persamaan yang memuat dua variabel di mana pangkat atau derajat pada masing-masing variabelnya sama dengan satu. Diketahui: Persamaan I : -x + y = 70; Persamaan II : 2x - y = 30; Untuk mencari nila x, samakan koefisien y-x + y = 70. Sistempersamaan linear dua variabel (spldv) merupakan suatu sistem yang terdiri atas dua persamaan linier yang mempunyai dua variabel. Substitusi nilai x atau y yang diperoleh pada langkah ketiga pada salah satu persamaan untuk mendapatkan nilai variabel yang belum diketahui. Penyelesaiannya adalah (x,y) Baca juga: Kerajaan sriwijaya vYwQR8. Jakarta - Detikers, tahukah kamu apa yang dimaksud dengan persamaan linear dua variabel? Persamaan linear dua variabel SPLDV adalah sebuah sistem yang terbentuk oleh persamaan linear yang melibatkan dua umum, persamaan linear dua variabel ditulis dengan bentuk ax + by = c. Sebagai keterangan, x dan y adalah variabel dengan pangkat satu, sedangkan a dan b adalah koefisien, dan c adalah kehidupan sehari-hari, sistem persamaan linear dua variabel bisa digunakan untuk menentukan harga barang, mencari keuntungan penjualan, dan buku Ayo, Belajar Persamaan, Pertidaksamaan, dan Sistem Persamaan Linear! karya Mirna Indrianti, ada tiga cara yang biasa digunakan untuk menyelesaikan permasalahan persamaan linear dua variabel, yaitu menggunakan metode grafik, substitusi, dan GrafikMetode ini menyelesaikan masalah dengan menentukan titik perpotongan dua garis lurus yang merupakan tampilan dari kedua persamaan linear dua ini adalah langkah-langkah penyelesaian SPLDV dengan metode grafik1. Tentukan titik potong salah satu persamaan linear dengan sumbu X atau sumbu Hubungkan kedua titik potong dengan menggunakan garis Lakukan langkah 1 dan 2 untuk persamaan lain pada Jika kedua titik berpotongan di x,y = x1, y1, penyelesaian SPLD adalah x=x1 dan y= Jika kedua titik tidak berpotongan, SPLDV tidak memiliki SoalTentukan penyelesaian dari sistem persamaan linear dua variabel berikut menggunakan metode Tentukan titik perpotongan tiap-tiap persamaan terhadap sumbu X dan 4x + 5y = 40Titik perpotongan terhadap sumbu X y=0= 4x + 50 = 40= 4x + 0 = 40=x = 40/4 = 10Jadi, garis berpotongan dengan sumbu X di 10,0Titik perpotongan terhadap sumbu Y x=0= 40 + 5y = 40= 0 + 5y = 40=y= 40/5= 8Jadi, garis berpotongan dengan sumbu Y di 0,8Untuk x + 2y = 14β€’ Titik perpotongan terhadap sumbu X y=0= x + 20 = 14= x + 0 = 14= x = 14Jadi, garis berpotongan dengan sumbu X di 14,0β€’ Titik perpotongan dengan sumbu Y x=0= 0 + 2y =14= 2y = 14= y = 14/2 = 7Jadi, garis berpotongan terhadap sumbu Y di 0,72. Gambarkan tiap-tiap persamaan dalam sebuah koordinat Jika sudah Digambar, kamu akan mendapat perpotongan di titik x,y = 2,6Metode SubstitusiCara selanjutnya adalah metode substitusi. Penyelesaian dengan metode ini adalah dengan memasukkan salah satu variabel ke variabel SoalSelesaikan SPLDV di bawah ini menggunakan metode Beri tanda persamaan1 pada persamaan linear yang terletak di atas dan 2 pada persamaan linear bagian Cari persamaan baru dengan cara mengubah persamaan linear 2. Kurangkan persamaan linear 2 dengan 5x= 5x - 5x + y = -11 - 5x= y = -11 - 5x3. Substitusikan persamaan y = -11 -5x di atas ke dalam persamaan 1= 4x + 3y = -11= 4x + 3-11 - 5x = -11= 4x -33 - 15x = -11= -11x - 33 = -114. Tambahkan kedua ruas dengan 33 untuk mendapatkan nilai variabel x= -11x - 33 + 33 = -11 + 33= -11x = 22= x = 22/-11 = -25. Setelah mendapatkan satu nilai variabel, substitusikan ke dalam persamaan 2= 5x + y = -11= 5-2 + y = -11= -10 + y = -11= y = -11 +10= y = -1Jadi, penyelesaian SPLDV adalah x = -2 dan y = -1Metode EliminasiEliminasi berasal dari bahasa Inggris eliminate yang berarti menghapuskan. Artinya, dalam metode ini terdapat proses menghilangkan variabel tertentu untuk mendapatkan nilai dari variabel yang SoalSelesaikan SPLDV berikut dengan metode eliminasiPenyelesaian Pilihlah salah satu variabel yang akan kamu tentukan nilainya. Jika ingin menentukan nilai variabel x, samakan koefisien variabel y dengan cara eliminasi.= -3x + 0 = -15= 3x = 15= x = 15/3 = 5Jadi, nilai x = 5Kemudian, mencari nilai variabel y Kalikan persamaan 2x + 3y = 1 dengan 5 dan persamaan 5x + 3y =16 dengan 2. Hasil perkalian tersebut menjadi persamaan baru seperti berikut. Jadi, penyelesaiannya adalah x = 5, y = -3 Simak Video "Petugas Tegaskan Eliminasi Selektif Tidak Sembarang pada Anjing di Bali" [GambasVideo 20detik] lus/lus Ilustrasi seorang murid mempelajari persamaan linear dua variabel. Foto iStockDalam matematika, persamaan linear dua variabel adalah persamaan yang memiliki dua variabel dengan pangkat masing-masing variabel sama dengan dari Matematika SMP/MTs Kelas VIII oleh R. Susanto Dwi dkk., pada persamaan linear dua variabel terdapat ciri-ciri sebagai variabel berpangkat satuUntuk memahami lebih jelas mengenai persamaan linear dua variabel, simak pembahasan dan Bentuk Umum Persamaan Linear Dua VariabelIlustrasi bentuk umum persamaan linear dua variabel. Foto Math ProblemsDikutip dari Super Modul Matematika SMP MTs Kelas VII, VIII, IX oleh Yosep Dwi Kristanto dan Russasmita Sri Padmi, persamaan linear dua variabel adalah persamaan yang memiliki bentuk ax + by = c, di mana a, b, dan c adalah bilangan-bilangan asli, serta a dan b keduanya tidak sama dengan nol. Jadi, bentuk umum persamaan linear dua variabel adalah ax + by = c, dengan x dan y disebut antara persamaan linear dua variabel dan sistem persamaan linear dua variabel adalah sebagai linear dua variabel melibatkan satu persamaan persamaan linear dua variabel melibatkan dua persamaan atau lebih. Cara Menentukan Himpunan Penyelesaian Persamaan Linear Dua VariabelUntuk memahami bagaimana cara menentukan himpunan penyelesaian persamaan linear dua variabel, perhatikan contoh mempunyai sepasang bilangan asli dan jumlah kedua bilangan adalah dua, tentukan semua pasangan bilangan yang dimaksud!Berdasarkan soal di atas, misalkan bilangan ke-1 adalah x dan bilangan ke-2 adalah y, maka persoalan di atas dapat ditulis dalam sebuah persamaan linear dua variabel, yaitu x + y = x + y = 2 merupakan suatu persamaan linear dua variabel, yaitu variabel x dan y. Menentukan penyelesaian persamaan x + y = 2 berarti menentukan pasangan-pasangan pengganti x dan y yang mengubah x + y = 2 menjadi kalimat yang memilih pengganti x, kemudian menentukan nilai y, yang mana x dan y adalah bilangan asli, maka akan diperoleh hal-hal x = 1, maka 1 + y = 2 sehingga y = 1. Penyelesaian dari x + y = 2 jika dinyatakan sebagai pasangan berurutan adalah 1, 1. Jadi, himpunan penyelesaian dari x + y = 2 dengan x dan y bilangan asli adalah 1, 1.Contoh Soal Persamaan Linear Dua VariabelIlustrasi seorang murid mengerjakan soal persamaan linear dua variabel. Foto iStockBerikut contoh soal persamaan linear dua variabel. Tentukan apakah persamaan-persamaan berikut merupakan persamaan linear dua variabel atau tidak. Jika iya, ubah persamaan tersebut menjadi bentuk umum dan tentukan a, b, dan linear dua variabel memiliki dua variabel yang masing-masing berpangkat satu.a Persamaan y = xΒ² - 2x + 1 memiliki 2 variabel, yaitu x dan y, tetapi variabel x ada yang memiliki pangkat dua. Oleh karena itu, persamaan ini bukan merupakan persamaan linear dua variabel.b Persamaan y = 10 - x memiliki dua variabel x dan y yang masing-masing memiliki pangkat satu, sehingga persamaan ini termasuk persamaan linear dua variabel. Persamaan tersebut dapat diubah menjadi seperti demikian, diperoleh persamaan umum x + y = 10, dengan a = 1, b = 1, dan c = 10.c Persamaan 2x - 3y = 5z memiliki tiga variabel, yaitu x, y, dan z, sehingga dapat disimpulkan persamaan ini bukan merupakan persamaan linear dua variabel. Apa ciri-ciri persamaan linear dua variabel? Apa perbedaan PLDV dan SPLDV?Apa bentuk umum persamaan linear dua variabel? Sistem Persamaan Linear Dua Variabel SPLDV merupakan salah satu materi matematika yang dipelajari saat tingkat SMP. Untuk memantapkan pemahaman tentang materi ini, berikut disajikan sejumlah soal beserta pembahasannya yang super lengkap dengan tipe berupa soal pemahaman dan soal cerita aplikasi. Soal juga dapat diunduh melalui tautan berikut Download PDF, 367 KB. Baca Juga Soal dan Pembahasan – SPLTV Quote by Nuril Baskan Kalau kamu sendirian, kendalikan pikiranmu. Kalau kamu dalam keramaian, kendalikan bicaramu. Kalau kamu dalam masalah, kendalikan emosimu. Kalau kamu dalam kesuksesan, kendalikan egomu. Bagian Pilihan Ganda Soal Nomor 1 Persamaan berikut tergolong persamaan linear dua variabel, kecuali $\cdots \cdot$ A. $7x+15=4y$ B. $6x-\dfrac{2y}{3} = 4$ C. $4x-12=3xy$ D. $\dfrac{5x}{2}+\dfrac{3y}{4}=10$ Pembahasan Persamaan $4x-12=3\color{red}{xy}$ tidak tergolong sebagai persamaan linear dua variabel karena memuat suku yang merupakan perkalian antara dua variabel berbeda ditandai dengan warna merah. Jawaban C [collapse] Baca Juga Soal Cerita dan Pembahasan – Bentuk Aljabar Sederhana Soal Nomor 2 Himpunan penyelesaian dari persamaan $2x+4y=8$ untuk $x \in \{0, 1, 2, 3, 4, 5\}$ dan $y \in$ bilangan bulat adalah $\cdots \cdot$ A. $\{2, 0, 1, 2, 0, 4\}$ B. $\{0, 2, 2, 3, 4, 4\}$ C. $\{0, -2, 2, -1, 4, 0\}$ D. $\{0, 2, 2, 1, 4, 0\}$ Pembahasan Diketahui $2x + 4y = 8$. Persamaan ini dapat disederhanakan dan diubah bentuknya seperti berikut. $\begin{aligned} 2x + 4y & = 8 \\ \text{Bagi kedua ruas}&~\text{dengan}~2 \\ x + 2y & = 4 \\ 2y & = 4-x \\ y & = \dfrac{4-x}{2} \end{aligned}$ Jika $x = 0$, maka $y = \dfrac{4-0}{2} = 2$. Jika $x = 1$, maka $y = \dfrac{4-1}{2} = \dfrac32$. Jika $x = 2$, maka $y = \dfrac{4-2}{2} = 1$. Jika $x = 3$, maka $y = \dfrac{4-3}{2} = \dfrac12$. Jika $x = 4$, maka $y = \dfrac{4-4}{2} = 0$. Jika $x = 5$, maka $y = \dfrac{4-5}{2} = -\dfrac12$. Karena $y \in$ bilangan bulat, maka himpunan penyelesaian persamaan tersebut adalah $\{0, 2, 2, 1, 4, 0\}$. Jawaban D [collapse] Soal Nomor 3 Penyelesaian dari sistem persamaan $2x-3y=-13$ dan $x+2y=4$ adalah $\cdots \cdot$ A. $x=-2$ dan $y=-3$ B. $x=-2$ dan $y=3$ C. $x=2$ dan $y=-3$ D. $x=2$ dan $y=3$ Pembahasan Diketahui SPLDV $\begin{cases} 2x-3y & = -13 && \cdots 1 \\ x+2y & = 4 && \cdots 2 \end{cases}$ Dengan menggunakan metode eliminasi, kita peroleh $\begin{aligned} \! \begin{aligned} 2x-3y & = 13 \\ x + 2y & = 4 \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 2 \end{aligned} \right & \! \begin{aligned}~2x-3y & = -13 \\ 2x+4y & = 8 \end{aligned} \\ & \rule{3 cm}{ – \\ & \! \begin{aligned} -7y & = -21 \\ y & = 3 \end{aligned} \end{aligned}$ Substitusi $y = 3$ pada salah satu persamaan, misalkan pada persamaan $2$. $\begin{aligned} x+2\color{red}{y} & = 4 \\ x+23 & = 4 \\ x+6 & = 4 \\ x & = -2 \end{aligned}$ Jadi, penyelesaian sistem persamaan tersebut adalah $x=-2$ dan $y=3$. Jawaban B [collapse] Soal Nomor 4 Jika $x$ dan $y$ merupakan penyelesaian sistem persamaan $2x-y=7$ dan $x+3y=14$, maka nilai $x+2y$ adalah $\cdots \cdot$ A. $8$ C. $11$ B. $9$ D. $13$ Pembahasan Diketahui SPLDV $\begin{cases} 2x-y & = 7 && \cdots 1 \\ x+3y& = 14 && \cdots 2 \end{cases}$ Eliminasi $y$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} 2x -y & = 7 \\ x + 3y & = 14 \end{aligned} \left \! \begin{aligned} \times 3 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~6x -3y & = 21 \\ x+3y & = 14 \end{aligned} \\ & \rule{ cm}{ + \\ & \! \begin{aligned} 7x & = 35 \\ x & = 5 \end{aligned} \end{aligned}$ Substitusi $x = 5$ pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} 2\color{red}{x} -y & = 7 \\ 25 -y & = 7 \\ 10 -y & = 7 \\ y & = 3 \end{aligned}$ Diperoleh nilai $y = 3$ sehingga $\boxed{x+2y=5+23=11}$ Jawaban C [collapse] Soal Nomor 5 Jika $x$ dan $y$ adalah penyelesaian dari sistem persamaan $2x+3y=3$ dan $3x-y=10$, maka nilai $2x-y = \cdots \cdot$ A. $3$ C. $5$ B. $4$ D. $7$ Pembahasan Diberikan SPLDV $\begin{cases} 2x+3y & = 3 && \cdots 1 \\ 3x-y & = 10 && \cdots 2 \end{cases}$ Eliminasi $y$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} 2x + 3y & = 3 \\ 3x -y & = 10 \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 3 \end{aligned} \right & \! \begin{aligned}~2x+3y & = 3 \\~9x-3y & = 30 \end{aligned} \\ & \rule{ cm}{ + \\ & \! \begin{aligned} 11x & = 33 \\ x & = 3 \end{aligned} \end{aligned}$ Substitusi $x = 3$ pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} 2\color{red}{x} + 3y & = 3 \\ 23 + 3y & = 3 \\ 6 + 3y & = 3 \\ 3y & = -3 \\ y & = -1 \end{aligned}$ Diperoleh nilai $y = -1$ sehingga $\boxed{2x-y = 23-1 = 7}$ Jawaban D [collapse] Soal Nomor 6 Himpunan penyelesaian sistem persamaan linear dua variabel $\begin{cases} 7x+3y=-5 \\ 5x+2y=1 \end{cases}$ adalah $\cdots \cdot$ A. $\{13,-32\}$ B. $\{-13,-32\}$ C. $\{32,-13\}$ D. $\{-32,-13\}$ Pembahasan Diketahui SPLDV $\begin{cases} 7x+3y & =-5 && \cdots 1 \\ 5x+2y & =1 && \cdots 2 \end{cases}$ Eliminasi $y$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} 7x+3y & = -5 \\ 5x+2y & = 1 \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 3 \end{aligned} \right & \! \begin{aligned}~14x+6y & = -10 \\~15x+6y & = 3 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} -x & = -13 \\ x & = 13 \end{aligned} \end{aligned}$ Substitusi $x = 13$ pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} 7\color{red}{x}+3y & = -5 \\ 713 + 3y & = -5 \\ 3y & = -96 \\ y & = -32 \end{aligned}$ Jadi, himpunan penyelesaian SPLDV tersebut adalah $\boxed{\{13, -32\}}$ Jawaban A [collapse] Soal Nomor 7 Himpunan penyelesaian dari sistem persamaan $\begin{cases} x- y & = 5 \\ 3x -5y & = 5 \end{cases}$ adalah $\cdots \cdot$ A. $\{-2,9\}$ C. $\{-5, 10\}$ B. $\{10,5\}$ D. $\{5, 10\}$ Pembahasan Diketahui SPLDV $\begin{cases} x- y & = 5 && \cdots 1 \\ 3x -5y & = 5 && \cdots 2 \end{cases}$ Eliminasi $x$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} x-y & = 5 \\ 3x -5y & = 5 \end{aligned} \left \! \begin{aligned} \times 3 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~3x-3y & = 15 \\~3x-5y & = 5 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 2y & = 10 \\ y & = 5 \end{aligned} \end{aligned}$ Substitusi $y = 5$ pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} x-\color{red}{y} & = 5 \\ x-5 & = 5 \\ x & = 10 \end{aligned}$ Jadi, himpunan penyelesaian SPLDV tersebut adalah $\boxed{\{10, 5\}}$ Jawaban B [collapse] Soal Nomor 8 Penyelesaian dari sistem persamaan $\dfrac{p}{2}+\dfrac{q}{4} = 1\dfrac34$ dan $\dfrac{p}{4}+\dfrac{q}{3} = \dfrac14$ adalah $\cdots \cdot$ A. $p=5$ dan $q=3$ B. $p=5$ dan $q=-3$ C. $p=-5$ dan $q=3$ D. $p=-5$ dan $q=-3$ Pembahasan Diketahui SPLDV $\begin{cases} \dfrac{p}{2}+\dfrac{q}{4} & = \dfrac74 && \cdots 1 \\ \dfrac{p}{4}+\dfrac{q}{3} & = \dfrac14 && \cdots 2 \end{cases}$ Kedua ruas dikalikan $4$ pada persamaan pertama, sedangkan kedua ruas dikalikan $12$ pada persamaan kedua sehingga kita peroleh $\begin{cases} 2p + q & = 7 && \cdots 1 \\ 3p+4q & = 3 && \cdots 2 \end{cases}$ Dengan menggunakan metode eliminasi, kita peroleh $\begin{aligned} \! \begin{aligned} 2p+q & = 7 \\ 3p+4q & = 3 \end{aligned} \left \! \begin{aligned} \times 4 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~8p+4q & = 28 \\ 3p+4q & = 3 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 5p & = 25 \\ p & = 5 \end{aligned} \end{aligned}$ Substitusi $p=5$ pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} 2\color{red}{p}+q & = 7 \\ 25+q & = 7 \\ 10+q & = 7 \\ q & = -3 \end{aligned}$ Jadi, penyelesaian sistem persamaan tersebut adalah $p=5$ dan $q=-3.$ Jawaban B [collapse] Soal Nomor 9 Akar dari sistem persamaan $\begin{cases} \dfrac{x+3}{4}-\dfrac{y-2}{3} & = 3\dfrac{1}{12} \\ \dfrac{x-3}{2}-\dfrac{y+4}{3} & = -\dfrac16 \end{cases}$ adalah $\cdots \cdot$ A. $x=-2$ dan $y=4$ B. $x=2$ dan $y=4$ C. $x=4$ dan $y=-2$ D. $x=4$ dan $y=2$ Pembahasan Diketahui SPLDV $\begin{cases} \dfrac{x+3}{4}-\dfrac{y-2}{3} & = \dfrac{37}{12} && \cdots 1 \\ \dfrac{x-3}{2}-\dfrac{y+4}{3} & = -\dfrac16 && \cdots 2 \end{cases}$ Pada persamaan $1$, kalikan $12$ pada kedua ruasnya untuk memperoleh $\begin{aligned} 3x+3-4y-2 & = 37 \\ 3x+9-4y+8 & = 37 \\ 3x-4y+17 & = 37 \\ 3x-4y & = 20 \end{aligned}$ Pada persamaan $2$, kalikan $6$ pada kedua ruasnya untuk memperoleh $\begin{aligned} 3x-3-2y+4 & = -1 \\ 3x-9-2y-8 & = -1 \\ 3x-2y-17 & = -1 \\ 3x-2y & = 16 \end{aligned}$ Kita peroleh SPLDV yang lebih sederhana. $\begin{cases} 3x-4y & = 20 && \cdots 1 \\ 3x-2y & = 16 && \cdots 2 \end{cases}$ Eliminasi $x$ pada kedua persamaan di atas sehingga kita dapatkan $\begin{aligned} -4y-2y & = 20-16 \\ -2y & = 4 \\ y & = -2 \end{aligned}$ Substitusi $y=-2$ pada salah satu persamaan, misalkan pada persamaan $2$. $\begin{aligned} 3x-2\color{red}{y} & = 16 \\ 3x-2-2 & = 16 \\ 3x+4 & = 16 \\ 3x & = 12 \\ x & = 4 \end{aligned}$ Jadi, akar penyelesaian sistem persamaan tersebut adalah $x = 4$ dan $y = -2.$ Jawaban C [collapse] Soal Nomor 10 Jika $p$ dan $q$ adalah akar dari sistem persamaan $2p+3q=2$ dan $4p-q=18$, maka $5p-2q^2 = \cdots \cdot$ A. $4$ C. $28$ B. $12$ D. $36$ Pembahasan Diketahui SPLDV $\begin{cases} 2p+3q & = 2 && \cdots 1 \\ 4p-q & = 18 && \cdots 2 \end{cases}$. Dengan menggunakan metode eliminasi, kita peroleh $\begin{aligned} \! \begin{aligned} 2p+3q & = 2 \\ 4p-q & = 18 \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~4p+6q & = 4 \\ 4p-q & = 18 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 7q & = -14 \\ q & = -2 \end{aligned} \end{aligned}$ Substitusi $q = -2$ pada salah satu persamaan, misalkan pada persamaan $2$. $\begin{aligned} 4p-\color{red}{q} & = 18 \\4p-2 & = 18 \\ 4p & = 16 \\ p & = 4 \end{aligned}$ Jadi, akar penyelesaian sistem persamaan tersebut adalah $p=4$ dan $q=-2$. Dengan demikian, nilai dari $\boxed{\begin{aligned} 5p-2q^2 & =54-2-2^2 \\ & =20-8=12 \end{aligned}}$ Jawaban B [collapse] Soal Nomor 11 Jika $x$ dan $y$ adalah akar dari sistem persamaan $x^2-2y^2=-2$ dan $3x^2+y^2=57$, maka nilai $2x^2-3y^2=\cdots \cdot$ A. $-30$ C. $5$ B. $-5$ D. $30$ Pembahasan Sistem persamaan di atas memang bukan termasuk SPLDV, tetapi dapat dibuat sebagai SPLDV dengan memisalkan $x^2 = a$ dan $y^2 = b$ sehingga diperoleh $\begin{cases} a-2b &= -2 && \cdots 1 \\ 3a+b & = 57 && \cdots 2 \end{cases}$ Dengan menggunakan metode eliminasi, kita peroleh $\begin{aligned} \! \begin{aligned} a-2b & = -2 \\ 3a+b & = 57 \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 2 \end{aligned} \right & \! \begin{aligned}~a-2b & = -2 \\~6a+2b & = 114 \end{aligned} \\ & \rule{3 cm}{ + \\ & \! \begin{aligned} 7a & = 112 \\ a & = 16 \end{aligned} \end{aligned}$ Substitusi $a = 16$ pada salah satu persamaan, misalkan pada persamaan $2$. $\begin{aligned} 3\color{red}{a}+b & = 57 \\ 316 + b & = 57 \\ b & = 9 \end{aligned}$ Untuk itu, nilai dari $\boxed{\begin{aligned} 2x^2-3y^2 & = 2a-3b \\ & = 216-39 \\ &= 32-27=5 \end{aligned}}$ Jawaban C [collapse] Soal Nomor 12 Diketahui $a$ dan $b$ memenuhi sistem persamaan berikut. $\begin{cases} \dfrac{7}{a+b}+\dfrac{6}{a-b} & = 3 \\ \dfrac{7}{a+b}-\dfrac{3}{a-b} & = 0 \end{cases}$ Nilai dari $a^2-b^2=\cdots \cdot$ A. $-29$ C. $21$ B. $-21$ D. $29$ Pembahasan Misalkan $x = \dfrac{1}{a+b}$ dan $y = \dfrac{1}{a-b}$ sehingga kita peroleh SPLDV $\begin{cases} 7x+6y & = 3 && \cdots 1 \\ 7x-3y & = 0 && \cdots 2 \end{cases}$ Kita akan mencari nilai dari $a^2-b^2=a+ba-b = \dfrac{1}{xy}$, yang mengharuskan kita untuk mencari masing-masing nilai $x$ dan $y$ terlebih dahulu. Dari SPLDV di atas, kita dapat langsung mengeliminasi $x$ dengan mengurangkan kedua persamaan. $\begin{aligned} 7x+6y-7x-3y & = 3-0 \\ 9y & = 3 \\ y & = \dfrac13 \end{aligned}$ Substitusi $y = \dfrac13$ pada salah satu persamaan, misalnya pada persamaan $2$. $\begin{aligned} 7x-3\color{red}{y} & = 0 \\ 7x-3\left\dfrac13\right & = 0 \\ 7x-1 & = 0 \\ x & = \dfrac17 \end{aligned}$ Dengan demikian, kita akan peroleh $\dfrac{1}{xy} = \dfrac{1}{\frac17 \cdot \frac13} = 21$. Jadi, nilai dari $\boxed{a^2-b^2=21}$ Jawaban C [collapse] Soal Nomor 13 Perhatikan grafik berikut. Titik $1, 2$ merupakan titik potong dua garis. Dengan kata lain, titik tersebut akan menjadi penyelesaian dari sistem persamaan $\cdots \cdot$ A. $x+2y=-3$ dan $2x-y=-4$ B. $x-2y=-3$ dan $2x-y=-4$ C. $x+2y=-3$ dan $2x+y=4$ D. $x-2y=-3$ dan $2x+y=4$ Pembahasan Kita akan menentukan dua persamaan garis yang ada pada gambar di atas. Garis pertama melalui titik $2, 0$ dan $0, 4$. Karena kita tahu koordinat titik potong terhadap sumbu koordinat, maka kita akan lebih mudah menentukan persamaan garisnya. Persamaan garis pertama adalah $2x + y = 4$. Garis kedua melalui titik $-3, 0$ dan $1, 2$. Untuk mencari persamaan garisnya, bisa menggunakan cara kece berikut. Persamaan garis kedua adalah $x-2y=-3.$ Jadi, titik $1, 2$ merupakan penyelesaian sistem persamaan $x-2y=-3$ dan $2x+y=4$. Jawaban D [collapse] Baca Soal dan Pembahasan – Gradien dan Persamaan Garis Lurus Soal Nomor 14 Jumlah dua bilangan cacah adalah $27$ dan selisih kedua bilangan itu adalah $3$. Hasil kali kedua bilangan itu adalah $\cdots \cdot$ A. $81$ C. $180$ B. $176$ D. $182$ Pembahasan Misalkan bilangan cacah itu adalah $a$ dan $b$, dengan $a > b$ sehingga diperoleh SPLDV $\begin{cases} a+b & = 27 && \cdots 1 \\ a-b & = 3 && \cdots 2 \end{cases}$ Jumlahkan keduanya dan kita peroleh $2a = 30$, berarti $a = 15$, dan $b = 12$. Hasil kali $a$ dan $b$ adalah $ab = 1512 = 180$. Jadi, hasil kali dua bilangan tersebut adalah $\boxed{180}$ Jawaban C [collapse] Baca Juga Materi, Soal, dan Pembahasan – Sistem Persamaan Linear dan Kuadrat Soal Nomor 15 Harga $5$ pensil dan $2$ buku adalah sedangkan harga $3$ pensil dan $4$ buku Jika harga $1$ pensil dinyatakan dengan $a$ dan harga $1$ buku dinyatakan dengan $b$, maka sistem persamaan linear dua variabel yang tepat sesuai masalah di atas adalah $\cdots \cdot$ $5a+2b= dan $4a+3b= $5a+2b= dan $3a+4b= $2a+5b= dan $3a+4b= $2a+5b= dan $4a+3b= Pembahasan Harga $5$ pensil dan $2$ buku adalah kita tulis $5a + 2b = Harga $3$ pensil dan $4$ buku adalah kita tulis $3a + 4b = Jadi, SPLDV yang sesuai adalah $\begin{cases} 5a+2b= \\ 3a+4b= \end{cases}$ Jawaban B [collapse] Soal Nomor 16 Andi membeli $2$ buku tulis dan $3$ pensil seharga sedangkan Didit membeli $3$ buku tulis dan $2$ pensil seharga Jika Anita membeli $1$ buku dan $1$ pensil, maka ia harus membayar sebesar $\cdots \cdot$ A. C. B. D. Pembahasan Misalkan $x$ = harga $1$ buku tulis dan $y$ = harga $1$ pensil sehingga dapat dibentuk model matematika berupa SPLDV sebagai berikut. $\begin{cases} 2x + 3y & = && \cdots 1 \\ 3x + 2y & = && \cdots 2 \end{cases}$ Jumlahkan persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} 2x+3y & = \\ 3x+2y & = \end{aligned} \\ \rule{ cm}{ + \\ \! \begin{aligned} 5x + 5y& = \\ x + y & = \end{aligned} \end{aligned}$ Dengan demikian, Anita harus membayar untuk membeli $1$ buku tulis dan $1$ pensil. Jawaban D [collapse] Soal Nomor 17 Umur Amar $\dfrac23$ kali umur Bondan. Enam tahun mendatang, jumlah umur mereka $42$ tahun. Selisih umur Amar dan Bondan adalah $\cdots \cdot$ A. $2$ tahun C. $4$ tahun B. $3$ tahun D. $6$ tahun Pembahasan Misalkan umur Amar = $A$ dan umur Bondan = $B$. Kita peroleh SPLDV berikut. $$\begin{cases} A & = \dfrac23B && \cdots 1 \\ A+6+B+6 & = 42 && \cdots 2 \end{cases}$$Substitusi persamaan $1$ pada persamaan $2$. $\begin{aligned} \color{red}{A}+6+B+6 & = 42 \\ \dfrac23B+6+B+6 & = 42 \\ \dfrac53B & = 30 \\ B & = 30 \times \dfrac35 = 18 \end{aligned}$ Umur Bondan saat ini $18$ tahun, berarti umur Amar sekarang adalah $\dfrac2318 = 12$ tahun. Selisih umur mereka berdua adalah $\boxed{18-12=6~\text{tahun}}$ Jawaban D [collapse] Soal Nomor 18 Harga $5$ kg gula pasir dan $30$ kg beras adalah sedangkan harga $2$ kg gula pasir dan $60$ kg beras adalah Harga $2$ kg gula pasir dan $5$ kg beras adalah $\cdots \cdot$ A. B. C. D. Pembahasan Misalkan $x$ = harga gula pasir per kg dan $y$ = harga beras per kg sehingga dapat dibentuk model matematika berupa SPLDV sebagai berikut. $\begin{cases} 5x + 30y & = && \cdots 1 \\ 2x + 60y & = && \cdots 2 \end{cases}$ Eliminasi $y$ dari persamaan $1$ dan $2$. $$\begin{aligned} \! \begin{aligned} 5x+30y & = \\ 2x+60y & = \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 1 \end{aligned} \right & \! \begin{aligned} 10x+60y & = \\ 2x+60y & = \end{aligned} \\ & \rule{4 cm}{ – \\ & \! \begin{aligned} 8x & = \\ x & = \end{aligned} \end{aligned}$$Substitusi $x = pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} 5\color{red}{x} +30y & = \\ 5 + 30y & = \\ + 30y & = \\ 30y & = \\ y & = \end{aligned}$ Jadi, harga $1$ kg gula pasir adalah dan harga $1$ kg beras adalah Dengan demikian, harga $2$ kg gula pasir dan $5$ kg beras adalah $2 \times + 5 \times =$ $\boxed{\text{Rp} Jawaban B [collapse] Soal Nomor 19 Harga $2$ kg gula pasir dan $3$ kg beras adalah sedangkan harga $3$ kg gula pasir dan $3$ kg beras adalah Harga $1$ kg gula pasir dan $1$ kg beras masing-masing adalah $\cdots \cdot$ A. dan B. dan C. dan D. dan Pembahasan Misalkan $x$ = harga gula pasir per kg dan $y$ = harga beras per kg sehingga dapat dibentuk model matematika berupa SPLDV sebagai berikut. $\begin{cases} 2x + 3y & = && \cdots 1 \\ 3x + 3y & = && \cdots 2 \end{cases}$ Eliminasi $y$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} 2x+3y & = \\ 3x+3y & = \end{aligned} \\ \rule{ cm}{ – \\ \! \begin{aligned} -x & = \\ x & = \end{aligned} \end{aligned}$ Substitusi $x = pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} 2\color{red}{x} +3y & = \\ 2 + 3y & = \\ + 3y & = \\ 3y & = \\ y & = \end{aligned}$ Jadi, harga $1$ kg gula pasir adalah dan harga $1$ kg beras adalah Jawaban A [collapse] Soal Nomor 20 Keliling lapangan yang berbentuk persegi panjang adalah $58$ meter. Jika selisih panjang dan lebarnya $9$ meter, maka luas lapangan tersebut adalah $\cdots~\text{m}^2$. A. $95$ C. $261$ B. $190$ D. $380$ Pembahasan Diketahui keliling persegi panjang 58 meter, berarti ditulis $2p + l = 58 \Leftrightarrow p + l = 29.$ Diketahui juga bahwa selisih panjang dan lebar 9 meter, berarti ditulis $p -l = 9.$ Dengan demikian, diperoleh SPLDV $\begin{cases} p + l &= 29 && \cdots 1 \\ p -l & = 9 && \cdots 2 \end{cases}$ Eliminasi $l$ dari persamaan $1$ dan $2.$ $\begin{aligned} \! \begin{aligned} p + l & = 29 \\ p -l& = 9 \end{aligned} \\ \rule{ cm}{ + \\ \! \begin{aligned} 2p & = 38 \\ p & = 19 \end{aligned} \end{aligned}$ Untuk $p=19$, diperoleh $19-l = 9$, yang berarti $l = 10$. Jadi, luasnya adalah $\boxed{L = pl = 1910 = 190~\text{m}^2}$ Jawaban B [collapse] Soal Nomor 21 Sukardi membeli kue untuk merayakan acara ulang tahun pacarnya. Kue yang dibeli ada $2$ jenis, yaitu kue nastar dan kue keju. Harga $1$ kaleng kue nastar sama dengan dua kali harga $1$ kaleng kue keju. Jika harga $3$ kaleng kue nastar dan $2$ kaleng kue keju adalah maka uang yang harus dibayar Sukardi apabila ia memutuskan untuk membeli $2$ kaleng kue nastar dan $3$ kaleng kue keju adalah $\cdots \cdot$ A. B. C. D. Pembahasan Misalkan $x =$ harga satu kaleng kue nastar dan $y =$ harga satu kaleng kue keju. Dengan demikian, diperoleh SPLDV $\begin{cases} x & = 2y \\ 3x + 2y & = \end{cases}$ Substitusi $2y = x$ pada persamaan $2$ sehingga ditulis $\begin{aligned} 3x + \color{red}{x} & = \\ 4x & = \\ x & = \end{aligned}$ Ini berarti, $y = \dfrac{1}{2} \cdot = Harga $2$ kaleng kue nastar dan $3$ kaleng kue keju adalah $\begin{aligned} 2x + 3y & = 2 + 3 \\ & = + \\ & = \end{aligned}$ Jadi, uang yang harus dibayar Sukardi adalah Jawaban B [collapse] Soal Nomor 22 Budi dan Joko membeli buku tulis dan pulpen di toko Pak Umar. Budi membeli $10$ buku tulis dan $4$ pulpen dengan harga Joko membeli $5$ buku tulis dan $8$ pulpen dengan harga Harga $1$ buku tulis dan $1$ pulpen masing-masing adalah $\cdots \cdot$ A. dan B. dan C. dan D. dan Pembahasan Misalkan $x, y$ berturut-turut menyatakan harga $1$ buku tulis dan $1$ pulpen sehingga terbentuk SPLDV $\begin{cases} 10x + 4y & = && \cdots 1 \\ 5x + 8y & = && \cdots 2 \end{cases}$ Eliminasi $x$ dari persamaan $1$ dan $2$. $$\begin{aligned} \! \begin{aligned} 10x + 4y & = \\ 5x + 8y & = \end{aligned} \left \! \begin{aligned} \div 2 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~5x+2y & = \\~5x+8y & = \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 6y & = \\ y & = \end{aligned} \end{aligned}$$Substitusi $y = pada salah satu persamaan, misalkan pada persamaan pertama. $\begin{aligned} 5x + 2\color{red}{y} & = \\ 5x + 2 & = \\ 5x + & = \\ 5x & = \\ x & = \end{aligned}$ Jadi, harga $1$ buku tulis dan $1$ pulpen berturut-turut adalah dan Jawaban D [collapse] Soal Nomor 23 Perhatikan gambar berikut. Gambar a dan b masing-masing menunjukkan potongan struk belanjaan Lucky dan Claresta di Indoapril Alun-alun Pacitan. Jika pada hari yang sama, Audrey memiliki uang dan ingin membeli buku tulis 10’s dan pensil 2B dengan kuantitas terbanyak, maka barang yang dapat dibeli olehnya adalah $\cdots \cdot$ empat buku tulis 10’s dan enam pensil 2B enam buku tulis 10’s dan empat pensil 2B sepuluh buku tulis 10’s dan enam pensil 2B enam buku tulis 10’s dan delapan pensil 2B Pembahasan Misalkan $x, y$ berturut-turut menyatakan harga 1 buku tulis 10’s dan 1 pensil sehingga terbentuk SPLDV $\begin{cases} 2x + 3y & = && \cdots 1 \\ x + y & = && \cdots 2 \end{cases}$ Eliminasi $x$ dari persamaan $1$ dan $2$. $$\begin{aligned} \! \begin{aligned} 2x + 3y & = \\ x + y & = \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 2 \end{aligned} \right & \! \begin{aligned}~2x + 3y & = \\~2x + 2y & = \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} y & = \end{aligned} \end{aligned}$$Substitusi $y = pada salah satu persamaan, misalkan pada persamaan $2$. $\begin{aligned} x + \color{red}{y} & = \\ x + & = \\ x & = \end{aligned}$ Ini berarti, harga $1$ buku tulis 10’s dan $1$ pensil berturut-turut adalah dan Cek alternatif jawaban empat buku tulis 10’s dan enam pensil 2B $\begin{aligned} 4x + 6y & = 4 + 6 \\ & = \end{aligned}$ enam buku tulis 10’s dan empat pensil 2B $\begin{aligned} 6x + 4y & = 6 + 4 \\ & = \end{aligned}$ kelebihan sepuluh buku tulis 10’s dan enam pensil 2B $\begin{aligned} 10x + 6y & = 10 + 6 \\ & = \end{aligned}$ kelebihan enam buku tulis 10’s dan delapan pensil 2B $\begin{aligned} 6x + 8y & = 6 + 8 \\ & = \end{aligned}$ kelebihan Jawaban A [collapse] Soal Nomor 24 Claresta dan Lucky membeli buku tulis dan pulpen di toko yang sama dengan bukti pembayaran sebagai berikut. Jika Roy membeli $5$ buku tulis dan $7$ pulpen yang berjenis sama di Toko Alang-Alang β€œAsyiapp Hore-Hore”, maka ia harus membayar sebesar $\cdots \cdot$ A. C. B. D. Pembahasan Misalkan $x, y$ berturut-turut menyatakan harga $1$ buku tulis dan $1$ pulpen sehingga terbentuk SPLDV $\begin{cases} 3x + 5y & = && \cdots 1 \\ 4x + 2y & = && \cdots 2 \end{cases}$ Eliminasi $y$ dari persamaan $1$ dan $2$. $$\begin{aligned} \! \begin{aligned} 3x + 5y & = \\ 4x + 2y & = \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 5 \end{aligned} \right & \! \begin{aligned} 6x + 10y & = \\~20x + 10y & = \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 14x & = \\ x & = \end{aligned} \end{aligned}$$Substitusi $x = pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} 3\color{red}{x} + 5y & = \\ 3 + 5y & = \\ + 5y & = \\ 5y & = \\ y & = \end{aligned}$ Ini berarti, harga $1$ buku tulis dan $1$ pulpen berturut-turut adalah dan Karena Roy membeli $5$ buku tulis dan $7$ pulpen, maka $\begin{aligned} 5x + 7y & = 5 + 7 \\ & = + = \end{aligned}$ Jadi, uang yang harus dibayar Roy sebesar Jawaban A [collapse] Soal Nomor 25 Selisih uang adik dan kakak Dua kali uang kakak ditambah uang adik hasilnya Jumlah uang mereka berdua adalah $\cdots \cdot$ A. C. B. D. Pembahasan Misalkan banyaknya uang adik disimbolkan $x$ dan banyaknya uang kakak disimbolkan $y$ sehingga diperoleh SPLDV $\begin{cases} x -y & = && \cdots 1 \\ x + 2y & = && \cdots 2 \end{cases}$ Dengan menggunakan metode gabungan, diperoleh $\begin{aligned} \! \begin{aligned} x + 2y & = \\ x -y & = \end{aligned} \\ \rule{ cm}{ – \\ \! \begin{aligned} 3y & = \\ y & = \end{aligned} \end{aligned}$ Untuk $y= diperoleh $x = + yang berarti $x = Jumlah uang mereka berdua kita tulis $\boxed{x+y= Jadi, jumlah uang mereka berdua adalah Jawaban B [collapse] Soal Nomor 26 Banyaknya penyelesaian solusi dari sistem persamaan linear $\begin{cases} 6x+2y & =12 \\ 3x+y & =6 \end{cases}$ adalah $\cdots \cdot$ A. $0$ C. $2$ B. $1$ D. $\infty$ tak hingga Pembahasan Perhatikan bahwa $\begin{aligned} \! \begin{aligned} 6x+2y & = 12 \\ 3x+y & = 6 \end{aligned} \left \! \begin{aligned} \times \frac12 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~3x+y & = 6 \\ 3x+y & = 6 \end{aligned} \end{aligned}$ Sistem tersebut memiliki dua persamaan yang sebenarnya ekuivalen sama. Ini berarti, sistem tersebut mengandung dua variabel dalam persamaan tunggal sehingga ada $\infty$ tak hingga banyaknya penyelesaian. Jawaban D [collapse] Soal Nomor 27 Jika sistem persamaan linear $\begin{cases} ax-by & =6 \\ 2ax + 3by & =2 \end{cases}$ mempunyai penyelesaian $x = 2$ dan $y=1$, maka nilai dari $a^2+b^2 = \cdots \cdot$ A. $2$ C. $5$ B. $4$ D. $8$ Pembahasan Karena $x=2$ dan $y=1$ merupakan penyelesaian dari SPLDV di atas, maka substitusi menghasilkan $\begin{cases} 2a-b = 6 \\ 4a+3b=2 \end{cases}$ Akan ditentukan nilai $b$ dengan menggunakan metode eliminasi. $\begin{aligned} \! \begin{aligned} 2a-b & = 6 \\ 4a+3b & = 2 \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~4a-2b & = 12 \\ 4a+3b & = 2 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} -5b & = 10 \\ b & = -2 \end{aligned} \end{aligned}$ Substitusi $b=-2$ pada salah satu persamaan, misalnya pada persamaan $2a-b=6$ sehingga diperoleh $2a-2=6 \Leftrightarrow 2a=4 \Leftrightarrow a = 2$ Dengan demikian, nilai dari $\boxed{a^2+b^2=2^2+-2^2=4+4=8}$ Jawaban D [collapse] Baca Juga Soal dan Pembahasan – Soal Cerita Aplikasi SPLTV Tingkat Lanjut Soal Nomor 28 Semua siswa di suatu kelas pada sekolah ABC akan menggunakan komputer. Jika setiap komputer digunakan oleh 2 siswa, maka akan ada 3 siswa yang tidak menggunakan komputer, sedangkan jika setiap komputer digunakan oleh 3 siswa, maka akan ada 4 komputer yang tidak digunakan. Banyak komputer yang dimiliki sekolah itu adalah $\cdots$ unit. A. $11$ C. $15$ E. $35$ B. $13$ D. $33$ Pembahasan Misalkan $\begin{aligned} x & = \text{banyak siswa} \\ y & = \text{banyak komputer} \end{aligned}$ Berdasarkan kalimat kedua soal, kita dapat membentuk model matematika berupa SPLDV. $\begin{cases} x & = 2y + 3 && \cdots 1 \\ x & = 3y -4 = 3y -12 && \cdots 2\end{cases}$ Substitusi nilai $x$ dari salah satu persamaan ke persamaan yang lain sehingga diperoleh $\begin{aligned} 2y + 3 & = 3y-12 \\ 3y-2y & = 12+3 \\ y & = 15 \end{aligned}$ Jadi, banyak komputer di sekolah ABC adalah $\boxed{15~\text{unit}}$ Jawaban C [collapse] Soal Nomor 29 Suatu sekolah memiliki gedung asrama yang terdiri dari beberapa kamar. Jika setiap kamar diisi oleh dua siswa, maka akan ada $12$ siswa yang tidak menempati kamar. Jika setiap kamar diisi oleh tiga siswa, maka akan ada $2$ kamar yang kosong. Berapa banyak kamar yang tersedia di asrama sekolah itu? A. $16$ C. $20$ E. $24$ B. $18$ D. $22$ Pembahasan Misalkan $S, K$ masing-masing mewakili banyak siswa dan banyak kamar yang ada di asrama. Berdasarkan informasi yang diberikan, diperoleh SPLDV berikut. $$\begin{cases} S & = 2K + 12 && \cdots 1 \\ S & = 3K-2 = 3K-6 && \cdots 2 \end{cases}$$Substitusi nilai $S$ dari salah satu persamaan ke persamaan yang lain sehingga diperoleh $\begin{aligned} 2K+12 & = 3K-6 \\ 3K-2K & = 6+12 \\ K & = 18 \end{aligned}$ Jadi, ada $\boxed{18}$ kamar di asrama sekolah tersebut. Jawaban B [collapse] Soal Nomor 30 Sebuah sekolah mempunyai beberapa ruang kelas. Jika jumlah kursi dalam setiap kelas adalah $36$ buah, maka akan tersisa $96$ kursi. Namun, jika jumlah kursi di setiap kelas ditambah sebanyak $6$ buah, maka akan kekurangan $48$ kursi. Berapa jumlah ruang kelas dalam sekolah tersebut? A. $30$ C. $20$ E. $12$ B. $24$ D. $15$ Pembahasan Misalkan $x, y$ masing-masing mewakili banyak kursi dan banyak ruang kelas. Dari informasi yang diberikan, kita dapat membuat model matematika berupa SPLDV berikut. $\begin{cases} x & = 36y + 96 && \cdots 1 \\ x & = 42y-48 && \cdots 2 \end{cases}$ Kurangi kedua persamaan tersebut dan diperoleh $\begin{aligned} 6y-144 & = 0 \\ 6y & = 144 \\ y & = \dfrac{144}{6} = 24 \end{aligned}$ Jadi, banyak ruang kelas di sekolah tersebut adalah $\boxed{24}$ Jawaban B [collapse] Soal Nomor 31 Pada rangkaian listrik tertutup, dengan menerapkan Hukum Kirchhoff diperoleh sistem persamaan $\begin{cases} 2R_1+3R_2 & = 8 \\ R_1-3R_2& = 1 \end{cases}$ Nilai dari $R_1$ dan $R_2$ dalam satuan $\Omega$ baca ohm berturut-turut adalah $\cdots \cdot$ A. $3$ dan $\dfrac13$ D. $\dfrac13$ dan $2$ B. $3$ dan $\dfrac23$ E. $3$ dan $1$ C. $\dfrac23$ dan $2$ Pembahasan Diketahui SPLDV $\begin{cases} 2R_1+3R_2 & = 8 && \cdots 1 \\ R_1-3R_2& = 1 && \cdots 2 \end{cases}$ Eliminasi $R_2$ dari kedua persamaan di atas. $\begin{aligned} \! \begin{aligned} 2R_1+3R_2 & = 8 \\ R_1-3R_2 & = 1 \end{aligned} \\ \rule{ cm}{ + \\ \! \begin{aligned} 3R_1 & = 9 \\ R_1 & = 3 \end{aligned} \end{aligned}$ Substitusi $R_1 = 3~\Omega$ pada persamaan $2$. $\begin{aligned} \color{red}{R_1}-3R_2 & = 1 \\ 3-3R_2 & = 1 \\ -3R_2 & = -2 \\ R_2 & = \dfrac23 \end{aligned}$ Jadi, nilai dari $R_1$ dan $R_2$ berturut-turut adalah $3~\Omega$ dan $\dfrac23 ~\Omega$. Jawaban B [collapse] Soal Nomor 32 Jika sistem persamaan $\begin{cases} mx+3y & = 21 \\ 4x-3y & = 0 \end{cases}$ memiliki penyelesaian bilangan bulat positif $x$ dan $y$, maka nilai $m+x+y$ yang mungkin adalah $\cdots \cdot$ A. $9$ atau $45$ D. $12$ atau $46$ B. $10$ atau $45$ E. $15$ atau $52$ C. $10$ atau $46$ Pembahasan Diketahui $\begin{cases} mx+3y & = 21 && \cdots 1 \\ 4x-3y & = 0 && \cdots 2 \end{cases}$ Pada persamaan $2$, diperoleh $-3y = -4x \Leftrightarrow y = \dfrac43x.$ Agar $y$ bulat, maka $x$ harus habis dibagi $3$. Substitusi $y = \dfrac43x$ pada persamaan $1$. $\begin{aligned} mx+3\color{red}{y} & = 21 \\ mx + \cancel{3}\left\dfrac{4}{\cancel{3}}x\right & = 21 \\ mx + 4x & = 21 \\ m+4x & = 21 \end{aligned}$ Bentuk $m+4x$ dapat dianggap sebagai perkalian dua bilangan bulat yang menghasilkan $21$. Faktor dari $21$ adalah $1, 3, 7$, dan $21$ hanya $3$ dan $21$ yang mungkin untuk menjadi nilai $x$ karena keduanya habis dibagi $3$. Misal diambil $x = 3$. Akibatnya, $m = 3$ dan $y = 4$ sehingga $\boxed{m+x+y = 3+3+4 = 10}$ Misal diambil $x = 21$. Akibatnya, $m = -3$ dan $y = 28$ sehingga $\boxed{m+x+y = -3+21+28 = 46}$ Jadi, nilai $m+x+y$ yang mungkin adalah $10$ atau $46.$ Jawaban C [collapse] Soal Nomor 33 Jika solusi dari SPLDV $\begin{cases} a+3x + y & = 0 \\ x + a+3y & = 0 \end{cases}$ tidak hanya $x, y = 0,0,$ maka nilai $a^2+6a+17 = \cdots \cdot$ A. $0$ C. $4$ E. $16$ B. $1$ D. $9$ Pembahasan Diketahui $\begin{cases} a+3x + y & = 0 && \cdots 1 \\ x + a+3y & = 0 && \cdots 2 \end{cases}$ Dua ruas pada persamaan $2$ dikali dengan $a+3$ menghasilkan $a+3x + a+3^2y = 0~~~~~\cdots 3$. Kurangi $1$ dan $3$, lalu selesaikan untuk mencari nilai $a$. $\begin{aligned} y-a+3^2y & = 0 \\ y1-a+3^2 & = 0 \\ 1-a+3^2 & = 0 && \text{Bagi}~y \\ 1-a^2+6a+9 & = 0 \\ a^2+6a+8 & = 0 \\ a+4a+2 & = 0 \end{aligned}$ Diperoleh nilai $a=-4$ atau $a=-2$. Substitusi $a=-4$ dan $a=-2$ pada bentuk $a^2+6a+17$. $$\begin{aligned} a = -4 & \Rightarrow -4^2 + 6-4 + 17 = 9 \\ a = -2 & \Rightarrow -2^2 + 6-2 + 17 = 9 \end{aligned}$$Jadi, nilai dari $\boxed{a^2+6a+17 = 9}$ Jawaban D [collapse] Soal Nomor 34 Pak Dede bekerja selama $6$ hari dengan $4$ hari di antaranya lembur dan ia mendapat upah Pak Asep bekerja selama $5$ hari dengan $2$ hari di antaranya lembur dan ia mendapat upah Pak Dian bekerja $4$ hari dan seluruhnya lembur. Mereka bertiga mendapat sistem upah yang sama. Upah yang diperoleh Pak Dian adalah $\cdots \cdot$ A. B. C. D. E. Pembahasan Misalkan $L, N$ berturut-turut menyatakan upah saat hari lembur dan upah saat hari normal. Pak Dede bekerja selama $6$ hari dengan $4$ hari di antaranya lembur $2$ hari sisanya normal dan ia mendapat upah Secara matematis, ditulis $\boxed{4L + 2N = Pak Asep bekerja selama $5$ hari dengan $2$ hari di antaranya lembur $3$ hari sisanya normal dan ia mendapat upah Secara matematis, ditulis $\boxed{2L + 3N = Dengan demikian, diperoleh SPLDV $\begin{cases} 4L + 2N & = && \cdots 1 \\ 2L+3N & = && \cdots 2 \end{cases}$ Persamaan $1$ dapat disederhanakan menjadi $2L + N = Akan dicari nilai dari $L$ dengan mengeliminasi $N$. $$\begin{aligned} \! \begin{aligned} 2L + N & = \\ 2L+3N & = \end{aligned} \left \! \begin{aligned} \times 3 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~6L + 3N & = \\~2L + 3N & = \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 4L & = \\ L & = \end{aligned} \end{aligned}$$Jadi, upah untuk satu hari lembur adalah Diketahui bahwa Pak Dian bekerja selama $4$ hari dan seluruhnya lembur. Upah yang diterimanya adalah $\boxed{4L = 4 = \text{Rp} Jawaban C [collapse] Soal Nomor 35 Suatu larutan mempunyai kadar asam $25\%$ dan larutan lainnya mengandung $65\%$ asam. Berapa liter larutan masing-masing yang dibutuhkan agar diperoleh $8$ liter larutan baru dengan kadar asam $40\%$? Larutan pertama $5$ liter dan larutan kedua $3$ liter Larutan pertama $3$ liter dan larutan kedua $5$ liter Larutan pertama $3$ liter dan larutan kedua $3$ liter Larutan pertama $5$ liter dan larutan kedua $5$ liter Larutan pertama $7$ liter dan larutan kedua $3$ liter Pembahasan Misalkan larutan pertama dibutuhkan sebanyak $A$ liter dan larutan kedua dibutuhkan sebanyak $B$ liter. Jumlah larutan secara keseluruhan adalah $8$ liter. Secara matematis, ditulis $\boxed{A+B = 8}$ Larutan pertama mempunyai kadar asam $25\%$ dan larutan kedua mengandung $65\%$ asam. Campuran keduanya menghasilkan $8$ liter larutan baru dengan kadar asam $40\%$. Secara matematis, ditulis $25\%A + 65\%B = 40\% \cdot 8.$ Sederhanakan menjadi $\boxed{5A + 13B = 64}$ Dengan demikian, diperoleh SPLDV $\begin{cases} A+B & = 8 && \cdots 1 \\ 5A +13B & = 64 && \cdots 2 \end{cases}$ Persamaan $1$ ekuivalen dengan $A=8-B$. Substitusi $A=8-B$ pada persamaan $2$. $\begin{aligned} 5\color{red}{A} +13B &= 64 \\ \Rightarrow 58-B+13B & = 64 \\ 40-5B+13B & = 64 \\ 8B & = 24 \\ B & = 3 \end{aligned}$ Substitusi $B = 3$ pada persamaan $1.$ $\begin{aligned} A+\color{red}{B} & =8 \\ A+3 & = 8 \\ A & = 5 \end{aligned}$ Jadi, dibutuhkan larutan pertama sebanyak $5$ liter dan larutan kedua sebanyak $3$ liter. Jawaban A [collapse] Soal Nomor 36 Elvand memerlukan waktu $2$ jam untuk mendayung $9$ km dengan mengikuti arus dan $6$ jam jika melawan arus. Kecepatan Elvand mendayung air dalam kondisi normal adalah $\cdots \cdot$ A. $1$ km/jam D. $3$ km/jam B. $1,5$ km/jam E. $4,5$ km/jam C. $2$ km/jam Pembahasan Misalkan $A, B$ berturut-turut menyatakan kecepatan Elvand saat mendayung dan kecepatan arus sungai dalam satuan km/jam. Dengan demikian, dapat dibuat SPLDV $\begin{cases} 2A+2B & = 9 && \cdots 1 \\ 6A-6B & = 9 && \cdots 2 \end{cases}$ Persamaan $2$ dapat disederhanakan menjadi $2A-2B = 3$. Eliminasi $A$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} 2A+2B & = 9 \\ 2A-2B & = 3 \end{aligned} \\ \rule{3 cm}{ + \\ \! \begin{aligned} 4A & = 12 \\ A & = 3 \end{aligned} \end{aligned}$ Jadi, kecepatan Elvand mendayung adalah $3$ km/jam. Jawaban D [collapse] Soal Nomor 37 Sistem persamaan linear $\begin{cases} p+1x+3p-2y & = p \\ 3p-1x + 4p+2y & = 2p \end{cases}$ memiliki solusi yang tak berhingga banyaknya untuk nilai $p = \cdots \cdot$ A. $-1$ atau $0$ D. $0$ atau $3$ B. $0$ atau $1$ E. $-1$ atau $-3$ C. $1$ atau $3$ Pembahasan SPLDV $\begin{cases} a_1x + b_1y & = c_1 \\ a_2x+b_2y & = c_2 \end{cases}$ memiliki tak hingga banyaknya penyelesaian, apabila $\dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} = \dfrac{c_1}{c_2}.$ Pemenuhan Persamaan Pertama $\begin{aligned} \dfrac{a_1}{a_2} & = \dfrac{b_1}{b_2} \\ \dfrac{p+1}{3p-1} & = \dfrac{3p-2}{4p+2} \\ p+14p+2 & = 3p-13p-2 \\ 4p^2+6p+2 & = 9p^2-9p+2 \\ 5p^2-15p & = 0 \\ 5pp-3 & = 0 \\ p = 0 &~\text{atau}~p=3 \end{aligned}$ Pemenuhan Persamaan Kedua $\begin{aligned} \dfrac{a_1}{a_2} & = \dfrac{c_1}{c_2} \\ \dfrac{p+1}{3p-1} & = \dfrac{\cancel{p}}{2\cancel{p}} \\ p+12 & = 3p-1 \\ 2p+2 & = 3p-1 \\ p & = 3 \end{aligned}$ Jelas bahwa $p=3$ akan mengakibatkan SPLDV di atas memiliki tak hingga banyaknya penyelesaian. Sekarang, uji $p = 0$. $\begin{cases} 0+1x+30-2y & = 0 \\ 30-1x + 40+2y & = 20 \end{cases}$ Sederhanakan menjadi $\begin{cases} x-2y & = 0 && 1 \\ -x+2y & = 0 && 2 \end{cases}$ Tampak bahwa persamaan $1$ dan $2$ ekuivalen sehingga akan ada tak hingga banyaknya penyelesaian untuknya. Jadi, nilai $p$ yang memenuhi adalah $p=0$ atau $p=3$. Jawaban D [collapse] Soal Nomor 38 Agar sistem persamaan $\begin{cases} 3x+2y & = 12 \\ 2x-y & = 1 \\ kx + 2y & = 16 \end{cases}$ mempunyai penyelesaian, maka nilai $k$ adalah $\cdots \cdot$ A. $-5$ C. $-1$ E. $5$ B. $-3$ D. $3$ Pembahasan Diberikan sistem persamaan linear $\begin{cases} 3x+2y & = 12 && \cdots 1 \\ 2x-y & = 1 && \cdots 2 \\ kx + 2y & = 16 && \cdots 3 \end{cases}$ Selesaikan persamaan $1$ dan $2$, artinya mencari nilai $x, y$ yang memenuhi kedua persamaan tersebut. $\begin{aligned} \! \begin{aligned} 3x+2y & = 12 \\ 2x-y & = 1 \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 2 \end{aligned} \right & \! \begin{aligned}~3x+2y & = 12 \\~4x-2y & = 2 \end{aligned} \\ & \rule{3 cm}{ + \\ & \! \begin{aligned} 7x & = 14\\ x & = 2 \end{aligned} \end{aligned}$ Untuk $x = 2$, kita substitusikan pada persamaan $2$ untuk memperoleh $\begin{aligned} 2\color{red}{2}-y & = 1 \\ 4-y & = 1 \\ y & = 3 \end{aligned}$ Kita peroleh $x, y = 2, 3$ merupakan penyelesaian untuk persamaan $1$ dan $2$, artinya agar sistem persamaan tersebut memiliki penyelesaian, maka persamaan $3$ juga harus memiliki penyelesaian serupa, yakni $2, 3$. $\begin{aligned} kx+2y & = 16 \\ \Rightarrow k2 + 23 & = 16 \\ 2k + 6 & = 16 \\ 2k & = 10 \\ k & = 5 \end{aligned}$ Jadi, nilai $k$ sama dengan $\boxed{5}$ Jawaban E [collapse] Soal Nomor 39 Diketahui sistem persamaan di bawah ini mempunyai tak terhingga banyaknya solusi $x, y$. $$\begin{cases} kx + y & = 1 \\ 4x + ky & = 2 \end{cases}$$Banyaknya nilai $k$ yang mungkin adalah $\cdots \cdot$ A. $0$ tidak ada B. $1$ C. $2$ D. $3$ E. $4$ Pembahasan Diketahui $$\begin{cases} kx + y & = 1 && \cdots 1 \\ 4x + ky & = 2 && \cdots 2 \end{cases}$$Pertama, samakan dulu konstanta di ruas kanan. Kalikan kedua ruas pada persamaan $1$ dengan $2$ sehingga didapat $$\begin{cases} 2kx + 2y & = 2 && \cdots 1 \\ 4x + ky & = 2 && \cdots 2 \end{cases}$$Agar memiliki tak terhingga banyaknya solusi, maka koefisien $x$ dan $y$ perlu disamakan sehingga berlaku $$\begin{cases} 2k & = 4 \\ 2 & = k \end{cases}$$Jelas bahwa $k = 2$ memenuhi. Jadi, hanya ada $\boxed{1}$ nilai $k$ yang mungkin. Jawaban B [collapse] Baca Materi, Soal, dan Pembahasan – Aturan Cramer Bagian Uraian Soal Nomor 1 Tentukan penyelesaian dari sistem persamaan berikut. a. $\begin{cases} \dfrac13x-5+\dfrac34y+2 &=-2\dfrac12 \\ \dfrac122x+3-\dfrac232y+1 & = 8\dfrac16 \end{cases}$ b. $\begin{cases} \dfrac{2}{x}+\dfrac{1}{y} & = 1\dfrac15 \\ \dfrac{1}{x}-\dfrac{3}{y} & = -\dfrac{1}{10} \end{cases}$ Pembahasan Jawaban a Diketahui $$\begin{cases} \dfrac13x-5+\dfrac34y+2 &=-2\dfrac12&& \cdots 1 \\ \dfrac122x+3-\dfrac232y+1 & = 8\dfrac16 && \cdots 2 \end{cases}$$Sederhanakan persamaan $1$ terlebih dahulu dengan mengalikan kedua ruas dengan $12$. $$\begin{aligned} \dfrac13x-5+\dfrac34y+2 &=-2\dfrac12 && \times 12 \\ 4x-5+9y+2 & = -30 \\ 4x-20+9y+18 & = -30 \\ 4x+9y-2 & = -30 \\ 4x+9y & = -28 && \cdots 3 \end{aligned}$$Sederhanakan juga persamaan $2$ dengan mengalikan kedua ruas dengan $6$. $$\begin{aligned} \dfrac122x+3-\dfrac232y+1 & = 8\dfrac16 && \times 6 \\ 32x+3-42y+1 & = 49 \\ 6x+9-8y-4 & = 49 \\ 6x-8y+5 & = 49 \\ 6x-8y & = 44 \\ 3x-4y & = 22 && \cdots 4 \end{aligned}$$Sekarang, dengan menggunakan metode eliminasi, kita peroleh $$\begin{aligned} \! \begin{aligned} 4x+9y & = -28 \\ 3x-4y & = 22 \end{aligned} \left \! \begin{aligned} \times 3 \\ \times 4 \end{aligned} \right & \! \begin{aligned}~12x+27y & = -84 \\ 12x-16y & = 88 \end{aligned} \\ & \rule{ – \\ & \! \begin{aligned} 43y & = -172 \\ y & = -4 \end{aligned} \end{aligned}$$Substitusi $y = -4$ pada salah satu persamaan, misalkan pada persamaan $4$. $\begin{aligned} 3x-4\color{red}{y}& = 22 \\ 3x-4-4 & = 22 \\ 3x+16 & = 22 \\ 3x & = 6 \\ x & = 2 \end{aligned}$ Jadi, penyelesaian SPLDV tersebut adalah $\boxed{2, -4}$ Jawaban b Diketahui $\begin{cases} \dfrac{2}{x}+\dfrac{1}{y} & = 1\dfrac15 \\ \dfrac{1}{x}-\dfrac{3}{y} & = -\dfrac{1}{10} \end{cases}$ Misalkan $a = \dfrac{1}{x}$ dan $b = \dfrac{1}{y}$ sehingga kita peroleh SPLDV berikut. $\begin{aligned} 2a + b & = \dfrac65 && \cdots 1 \\ a-3b & = -\dfrac{1}{10} && \cdots 2 \end{aligned}$ Sekarang, dengan menggunakan metode eliminasi, kita peroleh $\begin{aligned} \! \begin{aligned} 2a+b & = \frac65 \\ a-3b & = -\frac{1}{10} \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 2 \end{aligned} \right & \! \begin{aligned}~2a+b & = \frac65 \\ 2a-6b & = -\frac15 \end{aligned} \\ & \rule{ – \\ & \! \begin{aligned} 7b & = \frac75 \\ b & = \frac15 \end{aligned} \end{aligned}$ Karena $b = \dfrac{1}{y}$, maka itu berarti $y = 5$. Substitusi $y = 5$ pada salah satu persamaan $\dfrac{2}{x}+\dfrac{1}{y} = \dfrac65$. $\begin{aligned} \dfrac{2}{x} + \dfrac{1}{5} & = \dfrac65 \\ \dfrac{2}{x} & = 1 \\ x & = 2 \end{aligned}$ Jadi, penyelesaian sistem persamaan tersebut adalah $\boxed{2, 5}$ [collapse] Soal Nomor 2 Setengah uang Ali ditambah uang Hadi adalah Diketahui juga $\dfrac23$ uang Ali dikurangi $\dfrac13$ uang Hadi sama dengan Buatlah sistem persamaan model matematika terkait masalah di atas dan selesaikan. Tentukan jumlah uang mereka berdua. Pembahasan Jawaban a Misalkan uang Ali = $A$ dan uang Hadi = $H$. Kita peroleh SPLDV berikut. $\begin{cases} \dfrac12A + H & = && \cdots 1 \\ \dfrac23A-\dfrac13H & = && \cdots 2 \end{cases}$ Dengan menggunakan metode eliminasi, kita peroleh $$\begin{aligned} \! \begin{aligned} \frac12A+H & = \\ \frac23A-\frac13H & = \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 3 \end{aligned} \right & \! \begin{aligned}~\frac12A+H & = \\ 2A-H & = \end{aligned} \\ & \rule{ cm}{ + \\ & \! \begin{aligned} \dfrac52A & = \\ A & = \end{aligned} \end{aligned}$$Substitusi $A = pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} \dfrac12\color{red}{A} + H & = \\ \dfrac12 & = \\ & = \\ H & = \end{aligned}$ Jadi, penyelesaian SPLDV tersebut adalah $A = dan $H = Jawaban b Uang Ali dan uang Hadi masing-masing adalah dan sehingga jumlah uang mereka berdua adalah [collapse] Soal Nomor 3 Perhatikan gambar persegi panjang berikut. Tentukan nilai $x$ dan $y$ berdasarkan gambar di atas. Pembahasan Pada persegi panjang, kedua sisi yang berhadapan memiliki panjang yang sama sehingga kita peroleh SPLDV berikut. $\begin{cases} x + 3y & = 7 && \cdots 1 \\ 2x+y & = 9 && \cdots 2 \end{cases}$ Dengan menggunakan metode eliminasi, kita peroleh $\begin{aligned} \! \begin{aligned} x+3y & = 7 \\ 2x+y & = 9 \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~2x+6y & = 14 \\ 2x+y & = 9 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 5y & = 5 \\ y & = 1 \end{aligned} \end{aligned}$ Substitusi $y = 1$ pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} x+3\color{red}{y} & = 7 \\ x+31 & = 7 \\ x & = 4 \end{aligned}$ Jadi, nilai $x = 4$ dan $y = 1$. [collapse] Soal Nomor 4 Pak Guru akan membagikan sekantong permen kepada siswanya. Bila tiap siswa mendapat $2$ permen, maka akan tersisa $4$ permen, tetapi bila tiap siswa mendapat $3$ permen, maka akan ada $2$ siswa yang tidak mendapat permen sama sekali dan $1$ siswa lainnya hanya mendapat $2$ permen. Jika banyak permen adalah $p$ dan banyak siswa adalah $s$, maka tentukan sistem persamaan linear dari masalah di atas. Pembahasan Misalkan banyak permen = $p$ dan banyak siswa = $s$. Bila tiap siswa mendapat $2$ permen, maka akan tersisa $4$ permen, kita tuliskan $p = 2s + 4.$ Bila tiap siswa mendapat $3$ permen, maka akan ada $2$ siswa yang tidak mendapat permen sama sekali dan $1$ siswa lainnya hanya mendapat $2$ permen. Ini artinya, jumlah permennya sama dengan $3$ kali dari jumlah siswa, tetapi dikurangi dengan $6$ karena $2$ siswa tadi harusnya mendapat total $6$ permen, lalu dikurangi lagi dengan $1$ karena $1$ siswa lainnya kekurangan $1$ permen. Kita tulis, $p = 3s-6-1 = 3s-7$. Jadi, sistem persamaan linear dari masalah di atas adalah $\boxed{\begin{cases} p & = 2s + 4 \\ p & = 3s-7 \end{cases}}$ [collapse] Soal Nomor 5 Terdapat sebuah tabung kosong dengan berat $50$ gram. Material $X$ dengan banyaknya campuran logam $A$ dan logam $B$ berbanding $1 2$ dimasukkan ke dalam tabung sehingga beratnya menjadi $70$ gram. Jika material $Y$ yang mengandung campuran logam $A$ dan logam $B$ dengan perbandingan $2 1$ dimasukkan ke dalam tabung, maka beratnya menjadi $75$ gram. Berapakah berat total tabung jika material $Z$ yang memuat kandungan logam $A$ dan logam $B$ dengan perbandingan $1 1$ dimasukkan? Pembahasan Diketahui berat tabung = $50$ gram. Misalkan $A, B$ berturut-turut adalah berat logam $A$ dan berat logam $B$. Kondisi pertama Dimasukkan material $X$, sehingga berat tabung menjadi $70$ gram, artinya berat material $X$ sama dengan $70-50 = 20$ gram. Karena material $X$ terdiri dari campuran logam $A$ dan logam $B$ dengan perbandingan $1 2$, maka diperoleh persamaan $$2A + B = 20~~~~\cdots 1$$Kondisi kedua Dimasukkan material $Y$ sehingga berat tabung menjadi $75$ gram, artinya berat material $Y$ sama dengan $75-50 = 25$ gram. Karena material $Y$ terdiri dari campuran logam $A$ dan logam $B$ dengan perbandingan $2 1$, maka diperoleh persamaan $$A + 2B = 25~~~~\cdots 2$$Dari persamaan $1$ dan $2$, kita eliminasi variabel $B$. $$\begin{aligned} \! \begin{aligned} 2A+B & = 20 \\ A+2B & = 25 \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~4A + 2B & = 40 \\~A + 2B & = 25 \end{aligned} \\ & \rule{3 cm}{ – \\ & \! \begin{aligned} 3A & = 15 \\ A & = 5 \end{aligned} \end{aligned}$$Substitusi nilai $A = 5$ yang didapat pada persamaan $1$. $$\begin{aligned} 2\color{red}{A} + B & = 20 \\ 25 + B & = 20 \\ B & = 10 \end{aligned}$$Jadi, berat logam $A$ dan logam $B$ berturut-turut adalah $5$ gram dan $10$ gram. Berat material $Z$ yang mengandung logam $A$ dan logam $B$ dengan perbandingan $1 1$ adalah $5 + 10 = 15$ gram sehingga berat tabung menjadi $\boxed{50 + 15 = 65}$ gram. [collapse] Diketahui sistem persamaan linear dua variabel berikut. 2x+3y=83x+5y=14jika penyelesaian dari sistem tersebut adalah x=4 dan y=b,nilai 4a-3b adalah Itu harusnya x = a, karena buat nnyari harus ada variabel a nya juga di spldv + 3y = 83x + 5y = 146x + 9y = 246x + 10y = 28- - y = -4y = 46x + 9y = 246x + 36 = 246x = -12x = -2x = aa = -2y = bb = 44a - 3b =-8 - 12 = -20 bang min 8 kurang 12 itu darimana??

diketahui sistem persamaan linear dua variabel